Rope Ferry Rd. (Route 156), Waterford, CT 06385 Millstone Nuclear Power Station Northeast Nuclear Energy Company P.O. Box 128 Waterford, CT 06385-0128 (860) 447-1791 Fax (860) 444-4277 The Northeast Utilities System FEB 2 4 2000 Docket No. 50-336 B18002 Re: 10 CFR 50.73(a)(2)(iv) U.S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, DC 20555 > Millstone Nuclear Power Station, Unit No. 2 Licensee Event Report 2000-001-00 Manual Reactor Trip Due to Secondary System Transient This letter forwards Licensee Event Report (LER) 2000-001-00, documenting an event that occurred at Millstone Nuclear Power Station, Unit No. 2, on January 27, 2000. This LER is being submitted pursuant to 10 CFR 50.73(a)(2)(iv). There are no regulatory commitments contained within this letter. Very truly yours, NORTHEAST NUCLEAR ENERGY COMPANY FOR: C. J. Schwarz Station Director BY: D. S. McCracken Assistant Station Director - Safety Attachment (1): LER 2000-001-00 cc: H. J. Miller, Region I Administrator J. I. Zimmerman, NRC Project Manager, Millstone Unit No. 2 D. P. Beaulieu, Senior Resident Inspector, Millstone Unit No. 2 IF22 # Attachment 1 Millstone Nuclear Power Station, Unit No. 2 <u>LER 2000-001-00</u> | NRC FOR | M 366 | | | | U.S. NU | CLEAR REG | ULATORY | COMM | ISSION | | | APPRO | VED BY OMB | NO. 3 | 150-0104 | |----------------|---------|------|---------------------|-------------------|---|----------------------|-----------------|--------------------------------------|--------------------|-------------------------------------|--|--|---|---|---| | (6-7998) | | | | | | | | | EXPIRES 06/30/2001 | | | | | | | | | | 1 | | (See rever | EVENT REP
se for required reacters for eac | number of | R) | | | Nuclea
Papen
Budge
a curre | n esti
ar Reg
work
et, Was
ently v | mate to the
guilatory Com
Reduction P
shington, DC
valid OMB con | Records Mar
mission, Wash
roject (3150-0
20503. If an in
itrol number, th | nagemen
inglon,
(104), (
formation
se NRC | I this mandatory informations armed are incorporated intorvard comments regarding the Brach (T-6 F33), U.S. DC 20555-0001, and to the Diffice of Management and collection does not display may not conduct or sponso offermation collection. | | FACILITY N | AME (1) | | | | 200101 0 0 0 0 | _ | | | - | DOCK | ET N | JMBER (2) | - | T | PAGE (3) | | | | | Mill | stone Nu | clear Power S | tation Uni | t 2 | | | | | 050003 | 36 | | 1 OF 6 | | TITLE (4) | | _ | | | | | | | | 1 | | | | | · · · · · | | Mar | ual Re | acto | r Tr | ip Due to | Secondary S | ystem Tra | nsient | | | | | | | | | | EVENT DATE (5) | | | - | LER NUMBER (6) | | | REPORT DATE (7) | | | OTHER FACILITIES INVOLVED (8 | | | | DLVED (8) | | | монтн | DAY | YEA | AR | YEAR | SEQUENTIAL
NUMBER | REVISION
NUMBER | монтн | DAY | YEAR | FACILITY NAME | | | DOCKET NUMBER | | | | 01 | 27 | 200 | 00 | 2000 | - 001 | 00 | 02 | 24 | 2000 | FACIL | CILITY NAME | | | DOCKET NUMBER | | | OPERA | TING | 1 | | THIS REP | ORT IS SUBMITTE | ED PURSUA | NT TO TH | REQU | IREMEN | TS OF | 10 | CFR 5: (C | heck one o | or mor | e) (11) | | MODE | (9) | 1 | | 20.22 | 201(b) | -2.1 | 20.2203 | (a)(2)(v | 1 | \exists | | 50.73(a)(2 | 2)(i) | | 50.73(a)(2)(viii) | | POW | ER | | | 20.22 | 203(a)(1) | | 20.2203 | (a)(3)(i) | | | | 50.73(a)(2 | 2)(ii) | | 50.73(a)(2)(x) | | LEVEL | (10) | 100 | 00 20.2203(a)(2)(i) | | 20.2203(a)(3)(ii) | | | 5 | | 50.73(a)(2)(iii) | | 104 | 73.71 | | | | | | | 20.2203(a)(2)(li) | | | | 20.2203(a)(4) | | | | X | X 50.73(a)(2)(iv) | | | OTHER | | | | | 20.2203(a)(2)(iii) | | | | 50.36(c)(1) | | | | 50.73(a)(2)(v) | | 2)(v) | Specify in Abstract belo | | | | | | | 20.2203(a)(2)(iv) | | | 50.36(c)(2) | | | | 50.73(a)(2)(vii) | | 2)(vii) | or in NRC Form 366A | | | | | | | J | | LICENSEE C | ONTACT F | OR TH | IS LER (1 | 2) | | | | | | | NAME | | | | | | | | TELEPHONE NUMBER (Include Area Code) | | | | | | | | | | R. | Josh | hi, N | MP2 Acti | ng Regulatory | Complian | ce Supe | rvisor | | | | | (860) 4 | 40-2 | 080 | | 1 | | | | COMPLE | TE ONE LINE FOR | REACH COM | PONENT | FAILUF | RE DESCR | RIBED | IN T | HIS REPO | RT (13) | | | | CAUSE | SYST | EM | CON | MPONENT | MANUFACTURER | REPORTABL
TO EPIX | E | CAUS | SE SY | STEM | cor | MPONENT | MANUFAC | TURER | REPORTABLE
TO EPIX | | | | | | 1 | | | B | | | | | | | | | ABSTRACT (Limit to 1400 spaces, i.e., approximately 15 single-spaced typewritten lines) (16) SUPPLEMENTAL REPORT EXPECTED (14) (If yes, complete EXPECTED SUBMISSION DATE). On January 27, 2000 at approximately 1427 hours with the unit in Mode 1 at 100 percent power, a manual reactor trip was initiated due to a rapid decrease in the "B" Steam Generator (SG) level to approximately 57 percent and the trip of a SG feedwater pump. The plant response was uncomplicated with safety systems performing as expected. The plant was stabilized at normal post trip parameters (Mode 3) and operating shift personnel reacted appropriately. Operators manually initiated the auxiliary feedwater system to restore SG water levels. X NO MONTH EXPECTED SUBMISSION **DATE (15)** DAY YEAR It was determined that this event was caused by the loss of all heater drain flow to the suction of the SG feedwater pumps as a result of bulk flashing in the heater drain tank. As event precursors, it was determined that the transient was initiated due to the restoration of the 2A feedwater heater's sight glass causing oscillations in the feedwater control system that adversely affected the systems' ability to recover from the transient. Also, it was concluded that the heater drain tank vent control valve 2-HD-104 control logic wiring did not permit the valve to function properly in order to mitigate the consequences of a loss or rapid reduction of extraction steam pressure on the heater drain tank. Completed corrective actions include optimizing the feedwater heater system performance by improving the stroke time for the level controller valve, and correcting the control logic for 2-HD-104 such that the valve will close to prevent depressurization of the heater drain tank. TEXT CONTINUATION | FACILITY NAME (1) | DOCKET | | PAGE (3) | | | |---|----------|---------------------------------|----------|----|--------| | Millstone Nuclear Power Station Unit 2 | 05000336 | YEAR SEQUENTIAL REVISION NUMBER | | | 2 OF 6 | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 10000000 | 2000 | - 001 - | 00 | | TEXT (If more space is required, use additional copies of NRC Form 366A) (17) # Description of Event On January 27, 2000 at approximately 1427 hours with the unit in Mode 1 at 100 percent power, a manual reactor [RCT] trip was initiated due to a rapid decrease in the "B" Steam Generator (SG) level to approximately 57 percent and the trip of a SG feedwater pump (SGFP) [P]. The plant response was uncomplicated with safety systems performing as expected. The plant was stabilized at normal post trip parameters (Mode 3) and operating shift personnel reacted appropriately. Operators manually initiated the auxiliary feedwater system [BA] to restore SG water levels. After post-trip analysis, it was determined that the transient was initiated following a leak repair and restoration of the 2A feedwater heater [HX] sight glass [LG] (see figures 1 and 2 for simplified arrangement sketches of the heater drain system [SM] and sight glass/level sensor). This action combined with a slow actuation of the 2A feedwater heater level control valve [LCV] 2-HD-103C, exacerbated the severity of the transient, resulting in a large volume of relatively hot water entering the heater drain tank [TK]. Heater drain tank pressure increased, stopping or reducing flow from the 3A/B feedwater heaters resulting in high level and automatic extraction steam valve isolation. With extraction steam isolated to the 3A/B heaters, steam pressure in those heaters decayed approximately 30 psi over a short time period. During this period, the heater drain tank vent valve [VTV] 2-HD-104 to the 3A/B feedwater heaters remained open from the initiation of the transient until the main turbine [TRB] tripped following the reactor trip. This vent valve should have closed upon receipt of either the 3A or 3B heater high level alarm. With the vent valve open and extraction steam isolated, the 3A/B heaters condensed steam from the heater drain tank and caused a rapid depressurization of the tank. Because conditions in this portion of the feedwater heater system are near saturation conditions, the sudden loss of pressure caused the water in the heater drain tank to flash to steam which ultimately resulted in a loss of net positive suction head to the heater drain pumps and loss of heater drain flow to the SGs. Shortly thereafter, SG feed pump suction pressure decreased and resulted in a SGFP trip. As level in the SGs began to decrease, the primary plant was manually tripped. Because the event resulted in a manual actuation of the reactor protection system, it is being reported pursuant to the requirements of 10CFR50.73(a)(2)(iv). #### II. Cause of Event It was determined that this event was caused by the loss of all heater drain flow to the suction of the SGFPs as a result of bulk flashing in the heater drain tank. As event precursors, it was determined that the transient was initiated due to the restoration of the 2A feedwater heater's sight glass causing oscillations in the feedwater control system that adversely affected the systems' ability to recover from the transient. Also, it was concluded that the heater drain tank vent control valve 2-HD-104 control logic wiring did not permit the valve to function properly in order to mitigate the consequences of a loss or rapid reduction of extraction steam pressure on the heater drain tank. #### III. Analysis of Event The feedwater heater drain system is a non-safety related system which is not required to safely shutdown the plant or mitigate the consequences of an accident. However, this system is necessary for operation at 100 percent power since it provides approximately 30 percent of feedwater flow to the steam generators. In this event, the plant was not able to recover from the initiating transient which ultimately resulted in a total loss of feedwater #### TEXT CONTINUATION | FACILITY NAME (1) | DOCKET | | PAGE (3) | | | | |---|----------|---------------------------------|----------|----|--------|--| | Millstone Nuclear Power Station Unit 2 | 05000336 | YEAR SEQUENTIAL REVISION NUMBER | | | 3 OF 6 | | | entended a completion of the superior and the | | 2000 | - 001 | 00 | | | TEXT (If more space is required, use additional copies of NRC Form 366A) (17) heater drain flow. The plant was manually tripped. There were no challenges to the primary plant response and all safety systems responded as expected. As a result, this event is classified as being of low safety significance. #### IV. Corrective Action As a result of this event, the following actions have been performed: - The feedwater heater system performance was optimized by improving the stroke time for the level controller valve. - The control logic for 2-HD-104 has been corrected such that the valve will close to prevent depressurization of the heater drain tank. In addition, other corrective actions to improve the feedwater heater drains system performance are being addressed via the Millstone Corrective Action Program. # V. Additional Information #### Similar Events The following similar events relate to past feedwater heater system trips. Although each involved the feedwater heater drains system, no clear lines could be drawn to show that the corrective actions from these past events would have precluded this present event. # LER 99-009: "Manual Reactor Trip Due to Steam Leak in Turbine Building" Reported a manual reactor trip as a result of secondary plant anomaly. In this instance, a steam leak in the turbine building occurred following erratic feedwater heater level response. The cause of the event was determined to be inadequate controls associated with the adjustment and grooming of the feedwater heater level control valves which resulted in an overpressure condition when the shell side relief valve lifted. Corrective actions included refining of controls for adjusting feedwater heater string controls and clarifying guidance for torqued connections when significant dynamic piping loads are expected. #### LER 95-032: "Manual Reactor Trip Due to Unisolable Secondary Steam Leakage" Reported a manual trip as a result of a steam leak in a secondary system within the turbine building. The leak was caused by a 14 inch vertical rupture in the 8 inch diameter recirculation line from the discharge of the "B" heater drain pump to the heater drain tank. The root cause of the rupture was attributed to water hammer on an already degraded section of piping that resulting in the piping exceeding its burst pressure. Corrective actions primarily involved, equipment damage and erosion/corrosion inspections, and a design review of the heater drains system to verify adequacy for all operational conditions. NRC FORM 366A (4-95) U.S. NUCLEAR REGULATORY COMMISSION # LICENSEE EVENT REPORT (LER) TEXT CONTINUATION | FACILITY NAME (1) | DOCKET | | PAGE (3) | | | |--|----------|------|----------------------|--------------------|--------| | Millstone Nuclear Power Station Unit 2 | 05000336 | YEAR | SEQUENTIAL
NUMBER | REVISION
NUMBER | 4 OF 6 | | 10000000000000000000000000000000000000 | | 2000 | - 001 | 00 | | TEXT (If more space is required, use additional copies of NRC Form 366A) (17) LER 86-006: "Auto Rx Trip on Low Steam Generator Level Resulting from Loss of Heater Drains Flow" Reported an automatic plant trip on low steam generator level as a result of a loss of heater drains flow. The loss of flow was due to the closure of level control valve 2-HD-109 located downstream of the combined discharge of both heater drains pumps. The valve closure was the result of a failed fitting connection on the supply to the controller's signal air regulator. The cause of this event was attributed to cyclic vibration stresses compounded by the possibility that the original installation of the tubing may have overstressed the fitting connection. Corrective actions involved parts replacement and upgrading the support of the affected valve. Other plant valves with similar controllers were inspected and modified to provide adequate support. Energy Industry Identification System (EIIS) codes are identified in the text as [XX]. TEXT CONTINUATION | FACILITY NAME (1) | DOCKET | | PAGE (3) | | | |---|----------|-------------|----------------------|--------------------|--------| | Millstone Nuclear Power Station Unit 2 | 05000336 | YEAR | SEQUENTIAL
NUMBER | REVISION
NUMBER | 5 OF 6 | | Carrie Course Con Contract Carrier Course | | 2000 001 00 | | | | TEXT (If more space is required, use additional copies of NRC Form 366A) (17) Figure 1 TEXT CONTINUATION | FACILITY NAME (1) | DOCKET | | PAGE (3) | | | |--|----------|------|---------------------------------|----|--------| | Millstone Nuclear Power Station Unit 2 | 05000336 | YEAR | YEAR SEQUENTIAL REVISION NUMBER | | 6 OF 6 | | | | 2000 | - 001 - | 00 | | TEXT (If more space is required, use additional copies of NRC Form 366A) [17] Figure 2 "Heater Sight Glass / Level Sensor Arrangement"